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A PREFACE TO THE NONADIABATIC THEORY OF
ELECTRON-HYDROGEN IONIZATION
V
A. Temkin
Isboratory for Theoretical Studies
National Aeronautics and Space Administration

Goddard Space Flight Center
Greenbelt, Maryland

Some preliminary considerations of the nonadiabatic theory of e-H
ionization are given. The zeroth order problem is shown to give rise to
an Eg threshold law. The stationary phase result for the asymptotic
form of the zeroth order problem is shown to lead to a complete
suppression of S-wave ionization events in which the energies of the
scattered and ejected electron are equal. Extending the stationary
phase results to oﬁr conjectured asymptotic form for the complete S-wave
problem leads to an even greater suppression in the neighborhood of
equal energy events. The combination of such an S-wave cross section
together with reasonable higher partial wave cross sections yields a
gualitative understanding of experimental ionization emergy loss

measurements in helium.



I INTRODUCTION

In this§ report, we continue to examine the very difficult problem of

electron-hydrogen ionization from the point of view of the nonadiabatic
theoryl. In a previous note some preliminary results and observations were
stated? {which were at variance with previous analyses of this problemB),

which we shall attempt to quantify and amplify here. We shall continue to

deal with total S-wave scattering.

Section II deals with the explicit demonstration of the E% threshold
law for the zeroth order problem?. In section III we derive some of the
salient physical consequences of the stationary phase integration for the
closed form of the zeroth order ionization part of the wave function and
extend the analysis to our conjectured asymptotic form for the complete
S-wave problem.

The final section discusses these results and how they may elucidate
experimental results of the energy spectrum of electrons emerging from
electron-helium ionization. Additional arguments are given for expecting
a nonlinear threshold in the electron-atom ionization yield curve.

For purposes of convenience, the main formulae of the nonadiabatic theoryl

are given here.
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¥ is ry Trp times the S-wave function. Eg. (1.1) is the S-wave equation

(energies in rydbergs, lengths in Bohr radii); Eq. (1.2) defines the basic

expansion; Egs. (1.3) are the coupled set of equations corresponding to (1.1).

Egs. (1.4) and (1.5) define the quantities occurring in (1.3). The symbol

(tmoo/no) is a Clebsch-Gordan coefficient.
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II THE ZEROTH ORDER PROBLEM

This problem is defined by neglecting the terms on the rhs of (1.3) for

£ = 0. In the region r; = rp, this becomes:

@ +51_-_2+22+E>§ )(1‘1, rz) = 0 (2.1)

Expanding the solution in exact separable solutions, assuming E < 0, ylelds
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Consider the triplet case; the boundary condition for Qo

$ (o) (r1, r2) = 0

(o)

is
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Inserting Eq. (2.4) into (2.5) gives
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The normalized radial functions are given by
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where F(a, b, c) is the confluent hypergeometric function. Expanding both
sides of (2.6) "as a power series in r and demanding that the equation be
an identity in r, we find that the first two terms give rise to the equa-

tions

© c ) -
}: 5 -- | c@ o ag (2.89)
n=1 n o
c, ® 5
A=—iz§+jcm)q dq (2.9)
n
(0]

where (2.8) has been used to simplify (2.9). Iet us now invoke the conser-

) .

vation of current (in the limit kn -

B

2
J (a*Ccy) =) Xlc_| (2.10)

n=

Substituting (2.9) into (2.10) we arrive at
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If we assume that Cn is of the form

¢ =Cy/n* , (2.12)

then (2.11) reduces to an identity when
2 )
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providing
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Thus

C

C =

n T 3 (2.14)
satisfies the bhoundary condition to second order and is consistent with the
conservation of current.

The additional requirement (2.8a) provides no obstacle to Cn
being continuously extendable to c@). If, for example, we assume
-ya &
C)=-Cre g% (2.152)

then (2.8) is satisfied by a reasonable choice of ¥y:

y = [6/8(3)7%

L

where E(3) = 1.202057 is the Riemann zeta function. We have also
examined the effect of satisfying the boundary condition to the

next higher power in r. It turns out that all the previous equations
can still be maintained and that one has one additional requirement

to satisfy:
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Thus (2.12) still provides a consistent solution, but (2.15a) must
be generalized to a two parameter extension in order that both (2.8a)

and (2.8b) be satisfied. For instance the form

3
c@) =-Cre 1% (T4 qZT )

can fulfill both equations.

The fact that we have demonstrated that (2.14) provides a
consistent solution is not a proof that it is correct. Eq. (2.11)
could be satisfied by not requiring the sum and integral parts be
separately equal. We suspect, in fact, that the true solution is
of this latter variety. The present demonstration is really in-

tended to show that one can confidently exXxpect (2.14) to be the first

(2.8b)

(2.15b)
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term of an asymptotic series in inverse powers of n, and this is
3

law.

The derivation of the singlet result is closely analogous to the

above. The boundary condition is

38 ()

An ?

and the first two boundary condition equations are (2.88)plus
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Substituting this into the conservation of current now yields
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Again this will be satisfied by (2.14) with the auxiliary condition that
the q integral in (2.18) be zero.

To show that (2.14) implies an E% threshold law we are indebted to
K. Omidvar for a simple demonstration.11L Assume that one is considering
excitation to a group of neighboring discrete (s) states for high n. The

total cross section is given by

ns .
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(2.18)
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The energies of these states are given by

e, = - = (2.20)

from which it follows that there are 2n3d<-:,n (s) states in an energy range

de,. Converting (2.19) to an integral

J n'"n n? (2‘2'1)

continuing n into the continuum whereby

(2.22)

and using (2.14) for C,s We obtain
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IIT STATIONARY PHASE RESULTS AND THEIR PHYSICAL IMPLICATIONS

Contrary to what was stated in Ref. 2, the stationary phase result
can be made to satisfy Kato's theorem, and therefore it may represent the
correct asymptotic form of the zeroth order problem5. Explicitly for E > O
the separable solutions of (2.1) which do not vanish in the ionization region

are (q1% + @2% = E):

lim s (©) =j Clgz) T PFL P (rp) dgs
r1>r2->oo (o]

Stationary phase now gives for this integral
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The requirement of Kato's theorem (which is this case reduces to the con-

(o)

tinuity of @O and its first derivative at a = m/4) is

(3.1)

(3.2)
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= 0 (3.3)

Higher derivatives may have cusps. Likewise the assumption made for the
asymptotic form of the complete S-wave function2 leads under stationary

phase to

. . Wola) 1n(2/E p)
lim Y = %ﬁel{ﬁ S } (3.4)
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In the full S-wave case the validity of this result isvyery uncertain,
because it requires a factorization of the exponential part through an in-
finite sum of relative partial wave terms. However, if the expansion is not
suitably convergent in relative partial waves or if the regions in which
theasymptotic forms for the relative partial waves become valid differ
sufficiently among themselves,it may be that such a factorization is not
justified. Assuming it to be alright, then since Wo(a) has a cusp at
a = E for any value of ©;,, whereas the true potential is completely

continuous at a = E (612 L 0), it follows that the f(a, ©12) and all its
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derivatives (with respect to o) mst be zero at g = E. Nonzero functions

of this kind can be constructed. For example,

f(agelz) = g(612) exp [~ ¢/(1 - v)] (3.5)
where
n
r< tan o ¢ < N
A r> = lcot a o > f (3.62)
_n

The analyticity at a = m puts severe restrictions on the velocity

distribution of the ionized particles. In the ionization cross section

the quantity +v 1s replaced by

(3.6b)
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where k( and k> are the lesser and greater of k; and ko. It is convenient

in exploring the physical consequences of (3.6) to work in terms g(e),

the cross section for one of the electrons to appear with energy e¢. Such

a curve for a fixed availsble energy E mst clearly be symmetric about g s
thus
E
E
Q= ole) a -2 ole) e (3.7)
o) o

The quantity o(e) is related to f by

ote) = lel” {° (5.8)

m o
v A
NN [

B
In this way both g(e) and f are symmetric about 2 (and as long as f depends

3
on v and not E this gives rise to an EZ threshold law). Although the square

root factor in (3.8) is essential to the threshold law, it has no important
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effect on the shape of 5 as a function of «.

i)
< =
2 )

In Fig. 1 we have suppressed
the square root factor and have plotted (e

(3.9)

for various choices of e¢. The normalization of gs(e) is chosen so that

QS(O) = 1.
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IV  DISCUSSION

The primary observation to be made from Fig. 1 is that the region of
momentum space in which the two outgoing particles have equal speeds is
highly suppressed. This is an obvious consequence of the zeroth order prob-
lem in which any correlations which could be otherwise taken up in €;-
are eliminated in the definition of the model (thtis all correlations are
necessarily in relative energies only). It is an interesting consequence
of the full S-wave problem with the asymptotic form of Eq. (3.4) that this
suppression is enhanced! Such an unexpected consequence might in fact be
used to argue against Eq. (3.%4) (and we do not think that (3.4) can rigour-
ously be correct) and possibly against the asymptotic form (15) of Ref. 2.
However, in the absence of a definitive analysis, it is worthwhile to be
guided as much: as much as possible by experiment.

Before doing this, let us note that distributions of Fig. 1 are
directly opposite to what one would expect from phase space. For phase
space is proportional to [e(E-e)]é which has its maximm at ¢ = g and is
zero at the end points.

In Fig. 2 we have plotted the energy loss cross section, g(e), for S-wave
together with assumed P and D waves cross sections. The experiment that is
envisioned here is one in which one of the emerging particles in the ioniza-
tion process is observed with energy ¢ in the forward direction relative to
an incoming beam of energy k® = E + Iz I; being the binding energy of ejected
electrons in the atom. The energy of the second particle is therefore E - g,
and the experiment automatically averages over the directions of the second

particle relative to the first (©12). The S-wave is independent of the
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angle of observation relative to the direction of the incoming beam, there-
fore it is necessarily symmetric in e about g for any angle of observa-
tion. This is not so for higher partial waves in which cases only the
integrated cross sections over all angles of observatiod is symmetric in
¢. Appendix I contains a brief analysis of the P wave. For zero angle of
observation the higher partial cross sections are drawn as increasing func-
tion of e¢ corresponding to the simple physical expectation that the more
energetic the collision products, the more in the forward direction they
should emerge. In the Appendix it is shown why the P wave, however, must
decrease for e near its maximum value of E. The curve representing the
sum of these partial cross sections is in gualitative accord with preliminary
experimental results of Heideman7, for the case of electron-helium ionization;
The above experiment is not at low enough energies, as compared with
that of McGowan et al.8, to establish the form of the threshold energy
dependence of the ionization cross section. Rather it serves to illustrate
the primary correlation of the two outgoing particles as an anticorrelation in
the available energy. However, this correlation itself can be quite signifi-
cant in determining the form of the threshold law. To illustrate this

point, let us note that when we say that in elastic scattering the scattered

electron is completely shielded from the nucleus we do not mean

1lim

o ¥ 7 sin (kry + 8) Rig (rs) (1)
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for all values of rp. In particular it is probably incorrect as rp - %, but

that makes no difference,'since the wave function itself vanishes in the joint
Tn the case of ionization, the region r; = rp, - © is not energetically
disallowed, however, it may be dynamically unfavored to the extent of pro-
viding complete shielding for the outer particle. That is what, in effect,

we have been arguing happens.

In addition to the dynamical effects that we have already discussed,
there are additional effects which we believe should strengthen the cogency
of the concept of shielding. It has been customary in dealing with this
problem to divide the asymptotic region into a reaction zone and an emerging
zone or zones9. This implies that the phenomenon or ionization takes place
fairly close to the nucleus and that as the particles emerge their "orbits"
change relatively slowly as a result of the asymptotic interactions. However,
at any distance from the nucleus there are bound orbits, and it always is
possible that the inner particle, in particular, as it emerges can get
caugkt in a bound state. If such transitions can occur into high bound
states, they can also occur to states of lower continuum energy also. Thus
the conbination of possibilities can only serve to separate further the
energies of the emergent particles, and to lower the absolute ionization
cross section as a function of energy relative to elastic and inelastic

events. Near threshold this is an additional argument for a nonlinear

(concave up) dependence.
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APPENDIX

We give here a brief outline of the analysis of P-wave ionization.

Iet ©

B’ QB be the spherical angles of an observed electron in an ionization

event relative to a fixed coordinate system whose z-axis in the direction

10
of the incoming electron. The P-wave function can be written

~

Yp = cos 012 [fP + cos 635 fP]

+ sin GB cos ¥, sin @15 fP s (A1)
where for purposes of computing the ionization amplitude
fp = fp (k1, ka2, ©12)
(A2)

2

H
il

P fP (kZ: k,’l: g12) .
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¥B is angle between k;-ks plane and the z-axis.

Actually the fP should be multiplied by a function of r; and rs which
gives outoing current for two particles in the directions ﬁl, ﬁz respectively.
Although there is some discussion as to what this function should be, we

shall assume that for higher partial waves, it is not such as to exclude

events in which k; = ko.
The probability for a given event characteristed by the two vectors k;
and K? is the absolute square of Y?. For one electron to be cobserved in the

direction QB and the second to be anywhere, we have

N1 r .
op(0) = 5= | 1vples ke 0 v ) sin 012 @ 012 ayy

Special cases:

l2

m

1 2 .

c?(o) =3 j ((fPl + [fP cos? leJ sin 635 3612
o

TT ~
+ j‘ R [fPfP*] sin 6 12 de;o
o .
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1 " T2
op <gj> =% j lfPl sin® 615 d612

Note also that CP(O) = gP(n). Thus if it is unlikely to find a high
e(P—wavé)particle in the backward direction, then it must also be unlikely
to find one in the forward direction. This is the Jjustification for having
the P-wave descend rapidly for the higher ¢ as pictured in Fig. 2.

Although the various oP(GB) cross sections for a given GB are not
symmetric about ¢ = % , We show below that the integrated cross section
over all GB is sygmetric, as it must be, since each ionization event which
gives rise to an electron of energy e must also give rise to one of
energy E-¢ somewhere on the scattering sphere.

Integrating over the whole sphere, we find
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2
I . .
I“*’p! sin @, d0, Ay, sin 01 A0y,

o< f[kpla + ‘;PIZJSJ'-H 612 4612

+ J‘R (fPfP*) sin 2912 d912

The first integral is, recalling (Ap), obviously symmetric with respect to
ky < kp. If one separates fP and ;P into real and imaginary parts and uses
the symmetry under k; 2 kp of each part separately, one can see that the
second integral is also symmetric.

Finally for higher partial waves a similar analysis can be carried out
by using symmetric Euler a.nglesll and converting to the Hylleraas-Breit
Euler angles (lsbelled by the subscript B above) via Egs. (3.1)and (3.2)

of Ref. 11,
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FIGURE CAPTIONS

Fig. 1 S-wave ionization cross sections vs. the residual energy e for
a fixed bombarding energy calculated on the basis of Eq. (3.9),
for various values of ¢. The experiment of Heideman (Ref. T)

indicates a large value of c.

Fig. 2 S-wave cross section corresponding to ¢ = 2 of Fig. 1. The
higher partial waves are supposed to correspond to ionization
events in which one of the emerging particles is observed in the

forward direction.
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